Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Distributed $k$-Clustering for Data with Heavy Noise (1810.07852v2)

Published 18 Oct 2018 in cs.DC, cs.DS, and cs.LG

Abstract: In this paper, we consider the $k$-center/median/means clustering with outliers problems (or the $(k, z)$-center/median/means problems) in the distributed setting. Most previous distributed algorithms have their communication costs linearly depending on $z$, the number of outliers. Recently Guha et al. overcame this dependence issue by considering bi-criteria approximation algorithms that output solutions with $2z$ outliers. For the case where $z$ is large, the extra $z$ outliers discarded by the algorithms might be too large, considering that the data gathering process might be costly. In this paper, we improve the number of outliers to the best possible $(1+\epsilon)z$, while maintaining the $O(1)$-approximation ratio and independence of communication cost on $z$. The problems we consider include the $(k, z)$-center problem, and $(k, z)$-median/means problems in Euclidean metrics. Implementation of the our algorithm for $(k, z)$-center shows that it outperforms many previous algorithms, both in terms of the communication cost and quality of the output solution.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.