Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Agent Fully Decentralized Value Function Learning with Linear Convergence Rates (1810.07792v5)

Published 17 Oct 2018 in cs.LG, cs.DC, and stat.ML

Abstract: This work develops a fully decentralized multi-agent algorithm for policy evaluation. The proposed scheme can be applied to two distinct scenarios. In the first scenario, a collection of agents have distinct datasets gathered following different behavior policies (none of which is required to explore the full state space) in different instances of the same environment and they all collaborate to evaluate a common target policy. The network approach allows for efficient exploration of the state space and allows all agents to converge to the optimal solution even in situations where neither agent can converge on its own without cooperation. The second scenario is that of multi-agent games, in which the state is global and rewards are local. In this scenario, agents collaborate to estimate the value function of a target team policy. The proposed algorithm combines off-policy learning, eligibility traces and linear function approximation. The proposed algorithm is of the variance-reduced kind and achieves linear convergence with $O(1)$ memory requirements. The linear convergence of the algorithm is established analytically, and simulations are used to illustrate the effectiveness of the method.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.