Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Continual Learning of Recurrent Neural Networks by Locally Aligning Distributed Representations (1810.07411v4)

Published 17 Oct 2018 in cs.NE and cs.LG

Abstract: Temporal models based on recurrent neural networks have proven to be quite powerful in a wide variety of applications. However, training these models often relies on back-propagation through time, which entails unfolding the network over many time steps, making the process of conducting credit assignment considerably more challenging. Furthermore, the nature of back-propagation itself does not permit the use of non-differentiable activation functions and is inherently sequential, making parallelization of the underlying training process difficult. Here, we propose the Parallel Temporal Neural Coding Network (P-TNCN), a biologically inspired model trained by the learning algorithm we call Local Representation Alignment. It aims to resolve the difficulties and problems that plague recurrent networks trained by back-propagation through time. The architecture requires neither unrolling in time nor the derivatives of its internal activation functions. We compare our model and learning procedure to other back-propagation through time alternatives (which also tend to be computationally expensive), including real-time recurrent learning, echo state networks, and unbiased online recurrent optimization. We show that it outperforms these on sequence modeling benchmarks such as Bouncing MNIST, a new benchmark we denote as Bouncing NotMNIST, and Penn Treebank. Notably, our approach can in some instances outperform full back-propagation through time as well as variants such as sparse attentive back-tracking. Significantly, the hidden unit correction phase of P-TNCN allows it to adapt to new datasets even if its synaptic weights are held fixed (zero-shot adaptation) and facilitates retention of prior generative knowledge when faced with a task sequence. We present results that show the P-TNCN's ability to conduct zero-shot adaptation and online continual sequence modeling.

Citations (62)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.