Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generating Self-Guided Dense Annotations for Weakly Supervised Semantic Segmentation (1810.07050v1)

Published 16 Oct 2018 in cs.CV

Abstract: Learning semantic segmentation models under image-level supervision is far more challenging than under fully supervised setting. Without knowing the exact pixel-label correspondence, most weakly-supervised methods rely on external models to infer pseudo pixel-level labels for training semantic segmentation models. In this paper, we aim to develop a single neural network without resorting to any external models. We propose a novel self-guided strategy to fully utilize features learned across multiple levels to progressively generate the dense pseudo labels. First, we use high-level features as class-specific localization maps to roughly locate the classes. Next, we propose an affinity-guided method to encourage each localization map to be consistent with their intermediate level features. Third, we adopt the training image itself as guidance and propose a self-guided refinement to further transfer the image's inherent structure into the maps. Finally, we derive pseudo pixel-level labels from these localization maps and use the pseudo labels as ground truth to train the semantic segmentation model. Our proposed self-guided strategy is a unified framework, which is built on a single network and alternatively updates the feature representation and refines localization maps during the training procedure. Experimental results on PASCAL VOC 2012 segmentation benchmark demonstrate that our method outperforms other weakly-supervised methods under the same setting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.