Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Greedy Coordinate Descent for Composite Problems (1810.06999v1)

Published 16 Oct 2018 in math.OC, cs.LG, stat.CO, and stat.ML

Abstract: Coordinate descent with random coordinate selection is the current state of the art for many large scale optimization problems. However, greedy selection of the steepest coordinate on smooth problems can yield convergence rates independent of the dimension $n$, and requiring upto $n$ times fewer iterations. In this paper, we consider greedy updates that are based on subgradients for a class of non-smooth composite problems, which includes $L1$-regularized problems, SVMs and related applications. For these problems we provide (i) the first linear rates of convergence independent of $n$, and show that our greedy update rule provides speedups similar to those obtained in the smooth case. This was previously conjectured to be true for a stronger greedy coordinate selection strategy. Furthermore, we show that (ii) our new selection rule can be mapped to instances of maximum inner product search, allowing to leverage standard nearest neighbor algorithms to speed up the implementation. We demonstrate the validity of the approach through extensive numerical experiments.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.