Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Maximizing Monotone DR-submodular Continuous Functions by Derivative-free Optimization (1810.06833v2)

Published 16 Oct 2018 in cs.LG and stat.ML

Abstract: In this paper, we study the problem of monotone (weakly) DR-submodular continuous maximization. While previous methods require the gradient information of the objective function, we propose a derivative-free algorithm LDGM for the first time. We define $\beta$ and $\alpha$ to characterize how close a function is to continuous DR-submodulr and submodular, respectively. Under a convex polytope constraint, we prove that LDGM can achieve a $(1-e{-\beta}-\epsilon)$-approximation guarantee after $O(1/\epsilon)$ iterations, which is the same as the best previous gradient-based algorithm. Moreover, in some special cases, a variant of LDGM can achieve a $((\alpha/2)(1-e{-\alpha})-\epsilon)$-approximation guarantee for (weakly) submodular functions. We also compare LDGM with the gradient-based algorithm Frank-Wolfe under noise, and show that LDGM can be more robust. Empirical results on budget allocation verify the effectiveness of LDGM.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.