Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Finding Dense Subgraphs in Bipartite Graphs: Linear Algorithms (1810.06809v3)

Published 16 Oct 2018 in cs.DS and cs.SI

Abstract: Detecting dense subgraphs from large graphs is a core component in many applications, ranging from social networks mining, bioinformatics. In this paper, we focus on mining dense subgraphs in a bipartite graph. The work is motivated by the task of detecting synchronized behavior that can often be formulated as mining a bipartite graph formed by the source nodes (followers, customers) and target nodes (followees, products, etc.) for malicious patterns. We introduce a new restricted biclique problem, Maximal Half Isolated Biclique (MHI Biclique), and show that the problem finds immediate applications in fraud detection. We prove that, unlike many other biclique problems such as the maximum edge biclique problem that are known to be NP-Complete, the MHI Biclique problem admits a linear time solution. We provide a novel algorithm S-tree, and its extension, S-forest, that solves the problem efficiently. We also demonstrate that the algorithms are robust against deliberate camouflaging and other perturbations. Furthermore, our approach can automatically combine and prioritize multiple features, reducing the need for feature engineering while maintaining security against unseen attacks. Extensive experiments on several public and proprietary datasets demonstrate that S-tree/S-forest outperforms strong rivals across all configurations, becoming the new state of the art in fraud detection.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)