Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Colouring Graphs with Sparse Neighbourhoods: Bounds and Applications (1810.06704v1)

Published 15 Oct 2018 in math.CO and cs.DM

Abstract: Let $G$ be a graph with chromatic number $\chi$, maximum degree $\Delta$ and clique number $\omega$. Reed's conjecture states that $\chi \leq \lceil (1-\varepsilon)(\Delta + 1) + \varepsilon\omega \rceil$ for all $\varepsilon \leq 1/2$. It was shown by King and Reed that, provided $\Delta$ is large enough, the conjecture holds for $\varepsilon \leq 1/130,000$. In this article, we show that the same statement holds for $\varepsilon \leq 1/26$, thus making a significant step towards Reed's conjecture. We derive this result from a general technique to bound the chromatic number of a graph where no vertex has many edges in its neighbourhood. Our improvements to this method also lead to improved bounds on the strong chromatic index of general graphs. We prove that $\chi'_s(G)\leq 1.835 \Delta(G)2$ provided $\Delta(G)$ is large enough.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.