Parameterized Dynamic Cluster Editing (1810.06625v2)
Abstract: We introduce a dynamic version of the NP-hard graph problem Cluster Editing. The essential point here is to take into account dynamically evolving input graphs: Having a cluster graph (that is, a disjoint union of cliques) that represents a solution for the first input graph, can we cost-efficiently transform it into a "similar" cluster graph that is a solution for the second ("subsequent") input graph? This model is motivated by several application scenarios, including incremental clustering, the search for compromise clusterings, or also local search in graph-based data clustering. We thoroughly study six problem variants (edge editing, edge deletion, edge insertion; each combined with two distance measures between cluster graphs). We obtain both fixed-parameter tractability as well as (parameterized) hardness results, thus (except for three open questions) providing a fairly complete picture of the parameterized computational complexity landscape under the two perhaps most natural parameterizations: the distance of the new "similar" cluster graph to (i) the second input graph and to (ii) the input cluster graph.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.