Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parameterized Dynamic Cluster Editing (1810.06625v2)

Published 15 Oct 2018 in cs.DM

Abstract: We introduce a dynamic version of the NP-hard graph problem Cluster Editing. The essential point here is to take into account dynamically evolving input graphs: Having a cluster graph (that is, a disjoint union of cliques) that represents a solution for the first input graph, can we cost-efficiently transform it into a "similar" cluster graph that is a solution for the second ("subsequent") input graph? This model is motivated by several application scenarios, including incremental clustering, the search for compromise clusterings, or also local search in graph-based data clustering. We thoroughly study six problem variants (edge editing, edge deletion, edge insertion; each combined with two distance measures between cluster graphs). We obtain both fixed-parameter tractability as well as (parameterized) hardness results, thus (except for three open questions) providing a fairly complete picture of the parameterized computational complexity landscape under the two perhaps most natural parameterizations: the distance of the new "similar" cluster graph to (i) the second input graph and to (ii) the input cluster graph.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.