Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

(Self-Attentive) Autoencoder-based Universal Language Representation for Machine Translation (1810.06351v1)

Published 15 Oct 2018 in cs.CL

Abstract: Universal language representation is the holy grail in machine translation (MT). Thanks to the new neural MT approach, it seems that there are good perspectives towards this goal. In this paper, we propose a new architecture based on combining variational autoencoders with encoder-decoders and introducing an interlingual loss as an additional training objective. By adding and forcing this interlingual loss, we are able to train multiple encoders and decoders for each language, sharing a common universal representation. Since the final objective of this universal representation is producing close results for similar input sentences (in any language), we propose to evaluate it by encoding the same sentence in two different languages, decoding both latent representations into the same language and comparing both outputs. Preliminary results on the WMT 2017 Turkish/English task shows that the proposed architecture is capable of learning a universal language representation and simultaneously training both translation directions with state-of-the-art results.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.