Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

(Self-Attentive) Autoencoder-based Universal Language Representation for Machine Translation (1810.06351v1)

Published 15 Oct 2018 in cs.CL

Abstract: Universal language representation is the holy grail in machine translation (MT). Thanks to the new neural MT approach, it seems that there are good perspectives towards this goal. In this paper, we propose a new architecture based on combining variational autoencoders with encoder-decoders and introducing an interlingual loss as an additional training objective. By adding and forcing this interlingual loss, we are able to train multiple encoders and decoders for each language, sharing a common universal representation. Since the final objective of this universal representation is producing close results for similar input sentences (in any language), we propose to evaluate it by encoding the same sentence in two different languages, decoding both latent representations into the same language and comparing both outputs. Preliminary results on the WMT 2017 Turkish/English task shows that the proposed architecture is capable of learning a universal language representation and simultaneously training both translation directions with state-of-the-art results.

Citations (7)

Summary

We haven't generated a summary for this paper yet.