Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

(Self-Attentive) Autoencoder-based Universal Language Representation for Machine Translation (1810.06351v1)

Published 15 Oct 2018 in cs.CL

Abstract: Universal language representation is the holy grail in machine translation (MT). Thanks to the new neural MT approach, it seems that there are good perspectives towards this goal. In this paper, we propose a new architecture based on combining variational autoencoders with encoder-decoders and introducing an interlingual loss as an additional training objective. By adding and forcing this interlingual loss, we are able to train multiple encoders and decoders for each language, sharing a common universal representation. Since the final objective of this universal representation is producing close results for similar input sentences (in any language), we propose to evaluate it by encoding the same sentence in two different languages, decoding both latent representations into the same language and comparing both outputs. Preliminary results on the WMT 2017 Turkish/English task shows that the proposed architecture is capable of learning a universal language representation and simultaneously training both translation directions with state-of-the-art results.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.