Robust descent using smoothed multiplicative noise (1810.06207v1)
Abstract: To improve the off-sample generalization of classical procedures minimizing the empirical risk under potentially heavy-tailed data, new robust learning algorithms have been proposed in recent years, with generalized median-of-means strategies being particularly salient. These procedures enjoy performance guarantees in the form of sharp risk bounds under weak moment assumptions on the underlying loss, but typically suffer from a large computational overhead and substantial bias when the data happens to be sub-Gaussian, limiting their utility. In this work, we propose a novel robust gradient descent procedure which makes use of a smoothed multiplicative noise applied directly to observations before constructing a sum of soft-truncated gradient coordinates. We show that the procedure has competitive theoretical guarantees, with the major advantage of a simple implementation that does not require an iterative sub-routine for robustification. Empirical tests reinforce the theory, showing more efficient generalization over a much wider class of data distributions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.