Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Revisit Batch Normalization: New Understanding from an Optimization View and a Refinement via Composition Optimization (1810.06177v1)

Published 15 Oct 2018 in math.OC and cs.LG

Abstract: Batch Normalization (BN) has been used extensively in deep learning to achieve faster training process and better resulting models. However, whether BN works strongly depends on how the batches are constructed during training and it may not converge to a desired solution if the statistics on a batch are not close to the statistics over the whole dataset. In this paper, we try to understand BN from an optimization perspective by formulating the optimization problem which motivates BN. We show when BN works and when BN does not work by analyzing the optimization problem. We then propose a refinement of BN based on compositional optimization techniques called Full Normalization (FN) to alleviate the issues of BN when the batches are not constructed ideally. We provide convergence analysis for FN and empirically study its effectiveness to refine BN.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.