Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Attention Driven Person Re-identification (1810.05866v1)

Published 13 Oct 2018 in cs.CV

Abstract: Person re-identification (ReID) is a challenging task due to arbitrary human pose variations, background clutters, etc. It has been studied extensively in recent years, but the multifarious local and global features are still not fully exploited by either ignoring the interplay between whole-body images and body-part images or missing in-depth examination of specific body-part images. In this paper, we propose a novel attention-driven multi-branch network that learns robust and discriminative human representation from global whole-body images and local body-part images simultaneously. Within each branch, an intra-attention network is designed to search for informative and discriminative regions within the whole-body or body-part images, where attention is elegantly decomposed into spatial-wise attention and channel-wise attention for effective and efficient learning. In addition, a novel inter-attention module is designed which fuses the output of intra-attention networks adaptively for optimal person ReID. The proposed technique has been evaluated over three widely used datasets CUHK03, Market-1501 and DukeMTMC-ReID, and experiments demonstrate its superior robustness and effectiveness as compared with the state of the arts.

Citations (145)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.