Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Is PGD-Adversarial Training Necessary? Alternative Training via a Soft-Quantization Network with Noisy-Natural Samples Only (1810.05665v2)

Published 10 Oct 2018 in cs.LG and stat.ML

Abstract: Recent work on adversarial attack and defense suggests that PGD is a universal $l_\infty$ first-order attack, and PGD adversarial training can significantly improve network robustness against a wide range of first-order $l_\infty$-bounded attacks, represented as the state-of-the-art defense method. However, an obvious weakness of PGD adversarial training is its highly-computational cost in generating adversarial samples, making it computationally infeasible for large and high-resolution real datasets such as the ImageNet dataset. In addition, recent work also has suggested a simple "close-form" solution to a robust model on MNIST. Therefore, a natural question raised is that is PGD adversarial training really necessary for robust defense? In this paper, we give a negative answer by proposing a training paradigm that is comparable to PGD adversarial training on several standard datasets, while only using noisy-natural samples. Specifically, we reformulate the min-max objective in PGD adversarial training by a problem to minimize the original network loss plus $l_1$ norms of its gradients w.r.t. the inputs. For the $l_1$-norm loss, we propose a computationally-feasible solution by embedding a differentiable soft-quantization layer after the network input layer. We show formally that the soft-quantization layer trained with noisy-natural samples is an alternative approach to minimizing the $l_1$-gradient norms as in PGD adversarial training. Extensive empirical evaluations on standard datasets show that our proposed models are comparable to PGD-adversarially-trained models under PGD and BPDA attacks. Remarkably, our method achieves a 24X speed-up on MNIST while maintaining a comparable defensive ability, and for the first time fine-tunes a robust Imagenet model within only two days. Code is provided on \url{https://github.com/tianzheng4/Noisy-Training-Soft-Quantization}

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.