Papers
Topics
Authors
Recent
2000 character limit reached

Automatic Configuration of Deep Neural Networks with EGO (1810.05526v1)

Published 10 Oct 2018 in cs.LG, cs.NE, and stat.ML

Abstract: Designing the architecture for an artificial neural network is a cumbersome task because of the numerous parameters to configure, including activation functions, layer types, and hyper-parameters. With the large number of parameters for most networks nowadays, it is intractable to find a good configuration for a given task by hand. In this paper an Efficient Global Optimization (EGO) algorithm is adapted to automatically optimize and configure convolutional neural network architectures. A configurable neural network architecture based solely on convolutional layers is proposed for the optimization. Without using any knowledge on the target problem and not using any data augmentation techniques, it is shown that on several image classification tasks this approach is able to find competitive network architectures in terms of prediction accuracy, compared to the best hand-crafted ones in literature. In addition, a very small training budget (200 evaluations and 10 epochs in training) is spent on each optimized architectures in contrast to the usual long training time of hand-crafted networks. Moreover, instead of the standard sequential evaluation in EGO, several candidate architectures are proposed and evaluated in parallel, which saves the execution overheads significantly and leads to an efficient automation for deep neural network design.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.