Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameterized Complexity of Independent Set in H-Free Graphs (1810.04620v2)

Published 10 Oct 2018 in cs.DS and cs.CC

Abstract: In this paper, we investigate the complexity of Maximum Independent Set (MIS) in the class of $H$-free graphs, that is, graphs excluding a fixed graph as an induced subgraph. Given that the problem remains $NP$-hard for most graphs $H$, we study its fixed-parameter tractability and make progress towards a dichotomy between $FPT$ and $W[1]$-hard cases. We first show that MIS remains $W[1]$-hard in graphs forbidding simultaneously $K_{1, 4}$, any finite set of cycles of length at least $4$, and any finite set of trees with at least two branching vertices. In particular, this answers an open question of Dabrowski et al. concerning $C_4$-free graphs. Then we extend the polynomial algorithm of Alekseev when $H$ is a disjoint union of edges to an $FPT$ algorithm when $H$ is a disjoint union of cliques. We also provide a framework for solving several other cases, which is a generalization of the concept of \emph{iterative expansion} accompanied by the extraction of a particular structure using Ramsey's theorem. Iterative expansion is a maximization version of the so-called \emph{iterative compression}. We believe that our framework can be of independent interest for solving other similar graph problems. Finally, we present positive and negative results on the existence of polynomial (Turing) kernels for several graphs $H$.

Citations (19)

Summary

We haven't generated a summary for this paper yet.