Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Primal-Dual Reduced Basis Methods for Convex Minimization Variational Problems: Robust True Solution A Posteriori Error Certification and Adaptive Greedy Algorithms (1810.04073v2)

Published 9 Oct 2018 in math.NA and cs.NA

Abstract: In this paper, with the parametric symmetric coercive elliptic boundary value problem as an example of the primal-dual variational problems satisfying the strong duality, we develop primal-dual reduced basis methods (PD-RBM) with robust true error certifications and discuss three versions of greedy algorithms to balance the finite element error, the exact reduced basis error, and the adaptive mesh refinements. For a class of convex minimization variational problems which has corresponding dual problems satisfying the strong duality, the primal-dual gap between the primal and dual functionals can be used as a posteriori error estimator. This primal-dual gap error estimator is robust with respect to the parameters of the problem, and it can be used for both mesh refinements of finite element methods and the true RB error certification. With the help of integrations by parts formula, the primal-dual variational theory is developed for the symmetric coercive elliptic boundary value problems with non-homogeneous boundary conditions by both the conjugate function and Lagrangian theories. A generalized Prager-Synge identity, which is the primal-dual gap error representation for this specific problem, is developed. RBMs for both the primal and dual problems with robust error estimates are developed. The dual variational problem often can be viewed as a constraint optimization problem. In the paper, different from the standard saddle-point finite element approximation, the dual RBM is treated as a Galerkin projection by constructing RB spaces satisfying the homogeneous constraint. Inspired by the greedy algorithm with spatio-parameter adaptivity of \cite{Yano:18}, adaptive balanced greedy algorithms with primal-dual finite element and reduced basis error estimators are discussed. Numerical tests are presented to test the PD-RBM with adaptive balanced greedy algorithms.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)