Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Local Frequency Interpretation and Non-Local Self-Similarity on Graph for Point Cloud Inpainting (1810.03973v1)

Published 28 Sep 2018 in cs.CV and cs.MM

Abstract: As 3D scanning devices and depth sensors mature, point clouds have attracted increasing attention as a format for 3D object representation, with applications in various fields such as tele-presence, navigation and heritage reconstruction. However, point clouds usually exhibit holes of missing data, mainly due to the limitation of acquisition techniques and complicated structure. Further, point clouds are defined on irregular non-Euclidean domains, which is challenging to address especially with conventional signal processing tools. Hence, leveraging on recent advances in graph signal processing, we propose an efficient point cloud inpainting method, exploiting both the local smoothness and the non-local self-similarity in point clouds. Specifically, we first propose a frequency interpretation in graph nodal domain, based on which we introduce the local graph-signal smoothness prior in order to describe the local smoothness of point clouds. Secondly, we explore the characteristics of non-local self-similarity, by globally searching for the most similar area to the missing region. The similarity metric between two areas is defined based on the direct component and the anisotropic graph total variation of normals in each area. Finally, we formulate the hole-filling step as an optimization problem based on the selected most similar area and regularized by the graph-signal smoothness prior. Besides, we propose voxelization and automatic hole detection methods for the point cloud prior to inpainting. Experimental results show that the proposed approach outperforms four competing methods significantly, both in objective and subjective quality.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.