Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Answer Extraction in Question Answering using Structure Features and Dependency Principles (1810.03918v1)

Published 9 Oct 2018 in cs.IR

Abstract: Question Answering (QA) research is a significant and challenging task in Natural Language Processing. QA aims to extract an exact answer from a relevant text snippet or a document. The motivation behind QA research is the need of user who is using state-of-the-art search engines. The user expects an exact answer rather than a list of documents that probably contain the answer. In this paper, for a successful answer extraction from relevant documents several efficient features and relations are required to extract. The features include various lexical, syntactic, semantic and structural features. The proposed structural features are extracted from the dependency features of the question and supported document. Experimental results show that structural features improve the accuracy of answer extraction when combined with the basic features and designed using dependency principles. Proposed structural features use new design principles which extract the long-distance relations. This addition is a possible reason behind the improvement in overall answer extraction accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.