Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Probabilistic Semantic Inpainting with Pixel Constrained CNNs (1810.03728v2)

Published 8 Oct 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Semantic inpainting is the task of inferring missing pixels in an image given surrounding pixels and high level image semantics. Most semantic inpainting algorithms are deterministic: given an image with missing regions, a single inpainted image is generated. However, there are often several plausible inpaintings for a given missing region. In this paper, we propose a method to perform probabilistic semantic inpainting by building a model, based on PixelCNNs, that learns a distribution of images conditioned on a subset of visible pixels. Experiments on the MNIST and CelebA datasets show that our method produces diverse and realistic inpaintings.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.