Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

DepecheMood++: a Bilingual Emotion Lexicon Built Through Simple Yet Powerful Techniques (1810.03660v1)

Published 8 Oct 2018 in cs.CL and cs.CY

Abstract: Several lexica for sentiment analysis have been developed and made available in the NLP community. While most of these come with word polarity annotations (e.g. positive/negative), attempts at building lexica for finer-grained emotion analysis (e.g. happiness, sadness) have recently attracted significant attention. Such lexica are often exploited as a building block in the process of developing learning models for which emotion recognition is needed, and/or used as baselines to which compare the performance of the models. In this work, we contribute two new resources to the community: a) an extension of an existing and widely used emotion lexicon for English; and b) a novel version of the lexicon targeting Italian. Furthermore, we show how simple techniques can be used, both in supervised and unsupervised experimental settings, to boost performances on datasets and tasks of varying degree of domain-specificity.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.