Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unique Metric for Health Analysis with Optimization of Clustering Activity and Cross Comparison of Results from Different Approach (1810.03419v1)

Published 8 Oct 2018 in stat.ML and cs.LG

Abstract: In machine learning and data mining, Cluster analysis is one of the most widely used unsupervised learning technique. Philosophy of this algorithm is to find similar data items and group them together based on any distance function in multidimensional space. These methods are suitable for finding groups of data that behave in a coherent fashion. The perspective may vary for clustering i.e. the way we want to find similarity, some methods are based on distance such as K-Means technique and some are probability based, like GMM. Understanding prominent segment of data is always challenging as multidimension space does not allow us to have a look and feel of the distance or any visual context on the health of the clustering. While explaining data using clusters, the major problem is to tell how many cluster are good enough to explain the data. Generally basic descriptive statistics are used to estimate cluster behaviour like scree plot, dendrogram etc. We propose a novel method to understand the cluster behaviour which can be used not only to find right number of clusters but can also be used to access the difference of health between different clustering methods on same data. Our technique would also help to also eliminate the noisy variables and optimize the clustering result. keywords - Clustering, Metric, K-means, hierarchical clustering, silhoutte, clustering index, measures

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.