Papers
Topics
Authors
Recent
2000 character limit reached

Deep LDA Hashing (1810.03402v1)

Published 8 Oct 2018 in cs.CV and cs.MM

Abstract: The conventional supervised hashing methods based on classification do not entirely meet the requirements of hashing technique, but Linear Discriminant Analysis (LDA) does. In this paper, we propose to perform a revised LDA objective over deep networks to learn efficient hashing codes in a truly end-to-end fashion. However, the complicated eigenvalue decomposition within each mini-batch in every epoch has to be faced with when simply optimizing the deep network w.r.t. the LDA objective. In this work, the revised LDA objective is transformed into a simple least square problem, which naturally overcomes the intractable problems and can be easily solved by the off-the-shelf optimizer. Such deep extension can also overcome the weakness of LDA Hashing in the limited linear projection and feature learning. Amounts of experiments are conducted on three benchmark datasets. The proposed Deep LDA Hashing shows nearly 70 points improvement over the conventional one on the CIFAR-10 dataset. It also beats several state-of-the-art methods on various metrics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.