Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Triple Attention Mixed Link Network for Single Image Super Resolution (1810.03254v1)

Published 8 Oct 2018 in cs.CV

Abstract: Single image super resolution is of great importance as a low-level computer vision task. Recent approaches with deep convolutional neural networks have achieved im-pressive performance. However, existing architectures have limitations due to the less sophisticated structure along with less strong representational power. In this work, to significantly enhance the feature representation, we proposed Triple Attention mixed link Network (TAN) which consists of 1) three different aspects (i.e., kernel, spatial and channel) of attention mechanisms and 2) fu-sion of both powerful residual and dense connections (i.e., mixed link). Specifically, the network with multi kernel learns multi hierarchical representations under different receptive fields. The output features are recalibrated by the effective kernel and channel attentions and feed into next layer partly residual and partly dense, which filters the information and enable the network to learn more powerful representations. The features finally pass through the spatial attention in the reconstruction network which generates a fusion of local and global information, let the network restore more details and improves the quality of reconstructed images. Thanks to the diverse feature recalibrations and the advanced information flow topology, our proposed model is strong enough to per-form against the state-of-the-art methods on the bench-mark evaluations.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.