Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Recycled ADMM: Improve Privacy and Accuracy with Less Computation in Distributed Algorithms (1810.03197v1)

Published 7 Oct 2018 in cs.CR, cs.LG, and math.OC

Abstract: Alternating direction method of multiplier (ADMM) is a powerful method to solve decentralized convex optimization problems. In distributed settings, each node performs computation with its local data and the local results are exchanged among neighboring nodes in an iterative fashion. During this iterative process the leakage of data privacy arises and can accumulate significantly over many iterations, making it difficult to balance the privacy-utility tradeoff. In this study we propose Recycled ADMM (R-ADMM), where a linear approximation is applied to every even iteration, its solution directly calculated using only results from the previous, odd iteration. It turns out that under such a scheme, half of the updates incur no privacy loss and require much less computation compared to the conventional ADMM. We obtain a sufficient condition for the convergence of R-ADMM and provide the privacy analysis based on objective perturbation.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube