Papers
Topics
Authors
Recent
2000 character limit reached

Learning to Optimize under Non-Stationarity (1810.03024v6)

Published 6 Oct 2018 in cs.LG and stat.ML

Abstract: We introduce algorithms that achieve state-of-the-art \emph{dynamic regret} bounds for non-stationary linear stochastic bandit setting. It captures natural applications such as dynamic pricing and ads allocation in a changing environment. We show how the difficulty posed by the non-stationarity can be overcome by a novel marriage between stochastic and adversarial bandits learning algorithms. Defining $d,B_T,$ and $T$ as the problem dimension, the \emph{variation budget}, and the total time horizon, respectively, our main contributions are the tuned Sliding Window UCB (\texttt{SW-UCB}) algorithm with optimal $\widetilde{O}(d{2/3}(B_T+1){1/3}T{2/3})$ dynamic regret, and the tuning free bandit-over-bandit (\texttt{BOB}) framework built on top of the \texttt{SW-UCB} algorithm with best $\widetilde{O}(d{2/3}(B_T+1){1/4}T{3/4})$ dynamic regret.

Citations (123)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.