Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Stochastic Chemical Reaction Networks for Robustly Approximating Arbitrary Probability Distributions (1810.02854v1)

Published 6 Oct 2018 in cs.CC, math.PR, and q-bio.MN

Abstract: We show that discrete distributions on the $d$-dimensional non-negative integer lattice can be approximated arbitrarily well via the marginals of stationary distributions for various classes of stochastic chemical reaction networks. We begin by providing a class of detailed balanced networks and prove that they can approximate any discrete distribution to any desired accuracy. However, these detailed balanced constructions rely on the ability to initialize a system precisely, and are therefore susceptible to perturbations in the initial conditions. We therefore provide another construction based on the ability to approximate point mass distributions and prove that this construction is capable of approximating arbitrary discrete distributions for any choice of initial condition. In particular, the developed models are ergodic, so their limit distributions are robust to a finite number of perturbations over time in the counts of molecules.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.