Cross-Subject Transfer Learning Improves the Practicality of Real-World Applications of Brain-Computer Interfaces (1810.02842v4)
Abstract: Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have shown its robustness in facilitating high-efficiency communication. State-of-the-art training-based SSVEP decoding methods such as extended Canonical Correlation Analysis (CCA) and Task-Related Component Analysis (TRCA) are the major players that elevate the efficiency of the SSVEP-based BCIs through a calibration process. However, due to notable human variability across individuals and within individuals over time, calibration (training) data collection is non-negligible and often laborious and time-consuming, deteriorating the practicality of SSVEP BCIs in a real-world context. This study aims to develop a cross-subject transferring approach to reduce the need for collecting training data from a test user with a newly proposed least-squares transformation (LST) method. Study results show the capability of the LST in reducing the number of training templates required for a 40-class SSVEP BCI. The LST method may lead to numerous real-world applications using near-zero-training/plug-and-play high-speed SSVEP BCIs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.