Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximate Leave-One-Out for High-Dimensional Non-Differentiable Learning Problems (1810.02716v1)

Published 4 Oct 2018 in cs.LG and stat.ML

Abstract: Consider the following class of learning schemes: \begin{equation} \label{eq:main-problem1} \hat{\boldsymbol{\beta}} := \underset{\boldsymbol{\beta} \in \mathcal{C}}{\arg\min} \;\sum_{j=1}n \ell(\boldsymbol{x}_j\top\boldsymbol{\beta}; y_j) + \lambda R(\boldsymbol{\beta}), \qquad \qquad \qquad (1) \end{equation} where $\boldsymbol{x}_i \in \mathbb{R}p$ and $y_i \in \mathbb{R}$ denote the $i{\rm th}$ feature and response variable respectively. Let $\ell$ and $R$ be the convex loss function and regularizer, $\boldsymbol{\beta}$ denote the unknown weights, and $\lambda$ be a regularization parameter. $\mathcal{C} \subset \mathbb{R}{p}$ is a closed convex set. Finding the optimal choice of $\lambda$ is a challenging problem in high-dimensional regimes where both $n$ and $p$ are large. We propose three frameworks to obtain a computationally efficient approximation of the leave-one-out cross validation (LOOCV) risk for nonsmooth losses and regularizers. Our three frameworks are based on the primal, dual, and proximal formulations of (1). Each framework shows its strength in certain types of problems. We prove the equivalence of the three approaches under smoothness conditions. This equivalence enables us to justify the accuracy of the three methods under such conditions. We use our approaches to obtain a risk estimate for several standard problems, including generalized LASSO, nuclear norm regularization, and support vector machines. We empirically demonstrate the effectiveness of our results for non-differentiable cases.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.