Papers
Topics
Authors
Recent
2000 character limit reached

Approximate Leave-One-Out for High-Dimensional Non-Differentiable Learning Problems (1810.02716v1)

Published 4 Oct 2018 in cs.LG and stat.ML

Abstract: Consider the following class of learning schemes: \begin{equation} \label{eq:main-problem1} \hat{\boldsymbol{\beta}} := \underset{\boldsymbol{\beta} \in \mathcal{C}}{\arg\min} \;\sum_{j=1}n \ell(\boldsymbol{x}_j\top\boldsymbol{\beta}; y_j) + \lambda R(\boldsymbol{\beta}), \qquad \qquad \qquad (1) \end{equation} where $\boldsymbol{x}_i \in \mathbb{R}p$ and $y_i \in \mathbb{R}$ denote the $i{\rm th}$ feature and response variable respectively. Let $\ell$ and $R$ be the convex loss function and regularizer, $\boldsymbol{\beta}$ denote the unknown weights, and $\lambda$ be a regularization parameter. $\mathcal{C} \subset \mathbb{R}{p}$ is a closed convex set. Finding the optimal choice of $\lambda$ is a challenging problem in high-dimensional regimes where both $n$ and $p$ are large. We propose three frameworks to obtain a computationally efficient approximation of the leave-one-out cross validation (LOOCV) risk for nonsmooth losses and regularizers. Our three frameworks are based on the primal, dual, and proximal formulations of (1). Each framework shows its strength in certain types of problems. We prove the equivalence of the three approaches under smoothness conditions. This equivalence enables us to justify the accuracy of the three methods under such conditions. We use our approaches to obtain a risk estimate for several standard problems, including generalized LASSO, nuclear norm regularization, and support vector machines. We empirically demonstrate the effectiveness of our results for non-differentiable cases.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.