Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Privacy-Preserving Multiparty Learning For Logistic Regression (1810.02400v1)

Published 4 Oct 2018 in cs.CR

Abstract: In recent years, machine learning techniques are widely used in numerous applications, such as weather forecast, financial data analysis, spam filtering, and medical prediction. In the meantime, massive data generated from multiple sources further improve the performance of machine learning tools. However, data sharing from multiple sources brings privacy issues for those sources since sensitive information may be leaked in this process. In this paper, we propose a framework enabling multiple parties to collaboratively and accurately train a learning model over distributed datasets while guaranteeing the privacy of data sources. Specifically, we consider logistic regression model for data training and propose two approaches for perturbing the objective function to preserve {\epsilon}-differential privacy. The proposed solutions are tested on real datasets, including Bank Marketing and Credit Card Default prediction. Experimental results demonstrate that the proposed multiparty learning framework is highly efficient and accurate.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)