Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Inverse Optimization through Online Learning (1810.01920v2)

Published 3 Oct 2018 in cs.LG, math.OC, and stat.ML

Abstract: Inverse optimization is a powerful paradigm for learning preferences and restrictions that explain the behavior of a decision maker, based on a set of external signal and the corresponding decision pairs. However, most inverse optimization algorithms are designed specifically in batch setting, where all the data is available in advance. As a consequence, there has been rare use of these methods in an online setting suitable for real-time applications. In this paper, we propose a general framework for inverse optimization through online learning. Specifically, we develop an online learning algorithm that uses an implicit update rule which can handle noisy data. Moreover, under additional regularity assumptions in terms of the data and the model, we prove that our algorithm converges at a rate of $\mathcal{O}(1/\sqrt{T})$ and is statistically consistent. In our experiments, we show the online learning approach can learn the parameters with great accuracy and is very robust to noises, and achieves a dramatic improvement in computational efficacy over the batch learning approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chaosheng Dong (18 papers)
  2. Yiran Chen (176 papers)
  3. Bo Zeng (41 papers)
Citations (39)

Summary

We haven't generated a summary for this paper yet.