Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Suites for Online Toxicity Detection (1810.01869v1)

Published 3 Oct 2018 in cs.LG, cs.CL, cs.NE, and stat.ML

Abstract: To identify and classify toxic online commentary, the modern tools of data science transform raw text into key features from which either thresholding or learning algorithms can make predictions for monitoring offensive conversations. We systematically evaluate 62 classifiers representing 19 major algorithmic families against features extracted from the Jigsaw dataset of Wikipedia comments. We compare the classifiers based on statistically significant differences in accuracy and relative execution time. Among these classifiers for identifying toxic comments, tree-based algorithms provide the most transparently explainable rules and rank-order the predictive contribution of each feature. Among 28 features of syntax, sentiment, emotion and outlier word dictionaries, a simple bad word list proves most predictive of offensive commentary.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. David Noever (66 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.