Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Machine Learning Suites for Online Toxicity Detection (1810.01869v1)

Published 3 Oct 2018 in cs.LG, cs.CL, cs.NE, and stat.ML

Abstract: To identify and classify toxic online commentary, the modern tools of data science transform raw text into key features from which either thresholding or learning algorithms can make predictions for monitoring offensive conversations. We systematically evaluate 62 classifiers representing 19 major algorithmic families against features extracted from the Jigsaw dataset of Wikipedia comments. We compare the classifiers based on statistically significant differences in accuracy and relative execution time. Among these classifiers for identifying toxic comments, tree-based algorithms provide the most transparently explainable rules and rank-order the predictive contribution of each feature. Among 28 features of syntax, sentiment, emotion and outlier word dictionaries, a simple bad word list proves most predictive of offensive commentary.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.