Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Approximating Approximate Pattern Matching (1810.01676v3)

Published 3 Oct 2018 in cs.DS

Abstract: Given a text $T$ of length $n$ and a pattern $P$ of length $m$, the approximate pattern matching problem asks for computation of a particular \emph{distance} function between $P$ and every $m$-substring of $T$. We consider a $(1\pm\varepsilon)$ multiplicative approximation variant of this problem, for $\ell_p$ distance function. In this paper, we describe two $(1+\varepsilon)$-approximate algorithms with a runtime of $\widetilde{O}(\frac{n}{\varepsilon})$ for all (constant) non-negative values of $p$. For constant $p \ge 1$ we show a deterministic $(1+\varepsilon)$-approximation algorithm. Previously, such run time was known only for the case of $\ell_1$ distance, by Gawrychowski and Uzna\'nski [ICALP 2018] and only with a randomized algorithm. For constant $0 \le p \le 1$ we show a randomized algorithm for the $\ell_p$, thereby providing a smooth tradeoff between algorithms of Kopelowitz and Porat [FOCS~2015, SOSA~2018] for Hamming distance (case of $p=0$) and of Gawrychowski and Uzna\'nski for $\ell_1$ distance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.