Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Approximating Approximate Pattern Matching (1810.01676v3)

Published 3 Oct 2018 in cs.DS

Abstract: Given a text $T$ of length $n$ and a pattern $P$ of length $m$, the approximate pattern matching problem asks for computation of a particular \emph{distance} function between $P$ and every $m$-substring of $T$. We consider a $(1\pm\varepsilon)$ multiplicative approximation variant of this problem, for $\ell_p$ distance function. In this paper, we describe two $(1+\varepsilon)$-approximate algorithms with a runtime of $\widetilde{O}(\frac{n}{\varepsilon})$ for all (constant) non-negative values of $p$. For constant $p \ge 1$ we show a deterministic $(1+\varepsilon)$-approximation algorithm. Previously, such run time was known only for the case of $\ell_1$ distance, by Gawrychowski and Uzna\'nski [ICALP 2018] and only with a randomized algorithm. For constant $0 \le p \le 1$ we show a randomized algorithm for the $\ell_p$, thereby providing a smooth tradeoff between algorithms of Kopelowitz and Porat [FOCS~2015, SOSA~2018] for Hamming distance (case of $p=0$) and of Gawrychowski and Uzna\'nski for $\ell_1$ distance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.