Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Can Adversarially Robust Learning Leverage Computational Hardness? (1810.01407v3)

Published 2 Oct 2018 in cs.LG, cs.CC, cs.CR, and stat.ML

Abstract: Making learners robust to adversarial perturbation at test time (i.e., evasion attacks) or training time (i.e., poisoning attacks) has emerged as a challenging task. It is known that for some natural settings, sublinear perturbations in the training phase or the testing phase can drastically decrease the quality of the predictions. These negative results, however, are information theoretic and only prove the existence of such successful adversarial perturbations. A natural question for these settings is whether or not we can make classifiers computationally robust to polynomial-time attacks. In this work, we prove strong barriers against achieving such envisioned computational robustness both for evasion and poisoning attacks. In particular, we show that if the test instances come from a product distribution (e.g., uniform over ${0,1}n$ or $[0,1]n$, or isotropic $n$-variate Gaussian) and that there is an initial constant error, then there exists a polynomial-time attack that finds adversarial examples of Hamming distance $O(\sqrt n)$. For poisoning attacks, we prove that for any learning algorithm with sample complexity $m$ and any efficiently computable "predicate" defining some "bad" property $B$ for the produced hypothesis (e.g., failing on a particular test) that happens with an initial constant probability, there exist polynomial-time online poisoning attacks that tamper with $O (\sqrt m)$ many examples, replace them with other correctly labeled examples, and increases the probability of the bad event $B$ to $\approx 1$. Both of our poisoning and evasion attacks are black-box in how they access their corresponding components of the system (i.e., the hypothesis, the concept, and the learning algorithm) and make no further assumptions about the classifier or the learning algorithm producing the classifier.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.