Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-scale Convolution Aggregation and Stochastic Feature Reuse for DenseNets (1810.01373v1)

Published 2 Oct 2018 in cs.LG, cs.CV, and stat.ML

Abstract: Recently, Convolution Neural Networks (CNNs) obtained huge success in numerous vision tasks. In particular, DenseNets have demonstrated that feature reuse via dense skip connections can effectively alleviate the difficulty of training very deep networks and that reusing features generated by the initial layers in all subsequent layers has strong impact on performance. To feed even richer information into the network, a novel adaptive Multi-scale Convolution Aggregation module is presented in this paper. Composed of layers for multi-scale convolutions, trainable cross-scale aggregation, maxout, and concatenation, this module is highly non-linear and can boost the accuracy of DenseNet while using much fewer parameters. In addition, due to high model complexity, the network with extremely dense feature reuse is prone to overfitting. To address this problem, a regularization method named Stochastic Feature Reuse is also presented. Through randomly dropping a set of feature maps to be reused for each mini-batch during the training phase, this regularization method reduces training costs and prevents co-adaptation. Experimental results on CIFAR-10, CIFAR-100 and SVHN benchmarks demonstrated the effectiveness of the proposed methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube