Papers
Topics
Authors
Recent
2000 character limit reached

Approximation and sampling of multivariate probability distributions in the tensor train decomposition (1810.01212v3)

Published 2 Oct 2018 in math.NA, cs.NA, math.PR, math.ST, and stat.TH

Abstract: General multivariate distributions are notoriously expensive to sample from, particularly the high-dimensional posterior distributions in PDE-constrained inverse problems. This paper develops a sampler for arbitrary continuous multivariate distributions that is based on low-rank surrogates in the tensor-train format. We construct a tensor-train approximation to the target probability density function using the cross interpolation, which requires a small number of function evaluations. For sufficiently smooth distributions the storage required for the TT approximation is moderate, scaling linearly with dimension. The structure of the tensor-train surrogate allows efficient sampling by the conditional distribution method. Unbiased estimates may be calculated by correcting the transformed random seeds using a Metropolis--Hastings accept/reject step. Moreover, one can use a more efficient quasi-Monte Carlo quadrature that may be corrected either by a control-variate strategy, or by importance weighting. We show that the error in the tensor-train approximation propagates linearly into the Metropolis--Hastings rejection rate and the integrated autocorrelation time of the resulting Markov chain. These methods are demonstrated in three computed examples: fitting failure time of shock absorbers; a PDE-constrained inverse diffusion problem; and sampling from the Rosenbrock distribution. The delayed rejection adaptive Metropolis (DRAM) algorithm is used as a benchmark. We find that the importance-weight corrected quasi-Monte Carlo quadrature performs best in all computed examples, and is orders-of-magnitude more efficient than DRAM across a wide range of approximation accuracies and sample sizes. Indeed, all the methods developed here significantly outperform DRAM in all computed examples.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.