Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sinkhorn AutoEncoders (1810.01118v3)

Published 2 Oct 2018 in cs.LG, cs.CV, and stat.ML

Abstract: Optimal transport offers an alternative to maximum likelihood for learning generative autoencoding models. We show that minimizing the p-Wasserstein distance between the generator and the true data distribution is equivalent to the unconstrained min-min optimization of the p-Wasserstein distance between the encoder aggregated posterior and the prior in latent space, plus a reconstruction error. We also identify the role of its trade-off hyperparameter as the capacity of the generator: its Lipschitz constant. Moreover, we prove that optimizing the encoder over any class of universal approximators, such as deterministic neural networks, is enough to come arbitrarily close to the optimum. We therefore advertise this framework, which holds for any metric space and prior, as a sweet-spot of current generative autoencoding objectives. We then introduce the Sinkhorn auto-encoder (SAE), which approximates and minimizes the p-Wasserstein distance in latent space via backprogation through the Sinkhorn algorithm. SAE directly works on samples, i.e. it models the aggregated posterior as an implicit distribution, with no need for a reparameterization trick for gradients estimations. SAE is thus able to work with different metric spaces and priors with minimal adaptations. We demonstrate the flexibility of SAE on latent spaces with different geometries and priors and compare with other methods on benchmark data sets.

Citations (92)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.