Papers
Topics
Authors
Recent
2000 character limit reached

CBPF: leveraging context and content information for better recommendations (1810.00751v1)

Published 1 Oct 2018 in cs.IR

Abstract: Recommender systems help users to find their appropriate items among large volumes of information. Different types of recommender systems have been proposed. Among these, context-aware recommender systems aim at personalizing as much as possible the recommendations based on the context situation in which the user is. In this paper we present an approach integrating contextual information into the recommendation process by modeling either item-based or user-based influence of the context on ratings, using the Pearson Correlation Coefficient. The proposed solution aims at taking advantage of content and contextual information in the recommendation process. We evaluate and show effectiveness of our approach on three different contextual datasets and analyze the performances of the variants of our approach based on the characteristics of these datasets, especially the sparsity level of the input data and amount of available information.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.