SVS-JOIN: Efficient Spatial Visual Similarity Join over Multimedia Data (1810.00549v1)
Abstract: In the big data era, massive amount of multimedia data with geo-tags has been generated and collected by mobile smart devices equipped with mobile communications module and position sensor module. This trend has put forward higher request on large-scale of geo-multimedia data retrieval. Spatial similarity join is one of the important problem in the area of spatial database. Previous works focused on textual document with geo-tags, rather than geo-multimedia data such as geo-images. In this paper, we study a novel search problem named spatial visual similarity join (SVS-JOIN for short), which aims to find similar geo-image pairs in both the aspects of geo-location and visual content. We propose the definition of SVS-JOIN at the first time and present how to measure geographical similarity and visual similarity. Then we introduce a baseline inspired by the method for textual similarity join and a extension named SVS-JOIN$_G$ which applies spatial grid strategy to improve the efficiency. To further improve the performance of search, we develop a novel approach called SVS-JOIN$_Q$ which utilizes a quadtree and a global inverted index. Experimental evaluations on real geo-image datasets demonstrate that our solution has a really high performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.