Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SVS-JOIN: Efficient Spatial Visual Similarity Join over Multimedia Data (1810.00549v1)

Published 1 Oct 2018 in cs.MM

Abstract: In the big data era, massive amount of multimedia data with geo-tags has been generated and collected by mobile smart devices equipped with mobile communications module and position sensor module. This trend has put forward higher request on large-scale of geo-multimedia data retrieval. Spatial similarity join is one of the important problem in the area of spatial database. Previous works focused on textual document with geo-tags, rather than geo-multimedia data such as geo-images. In this paper, we study a novel search problem named spatial visual similarity join (SVS-JOIN for short), which aims to find similar geo-image pairs in both the aspects of geo-location and visual content. We propose the definition of SVS-JOIN at the first time and present how to measure geographical similarity and visual similarity. Then we introduce a baseline inspired by the method for textual similarity join and a extension named SVS-JOIN$_G$ which applies spatial grid strategy to improve the efficiency. To further improve the performance of search, we develop a novel approach called SVS-JOIN$_Q$ which utilizes a quadtree and a global inverted index. Experimental evaluations on real geo-image datasets demonstrate that our solution has a really high performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.