Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Temporal Cliques Admit Sparse Spanners (1810.00104v5)

Published 28 Sep 2018 in cs.DM, cs.DC, and cs.NI

Abstract: Let $G=(V,E)$ be an undirected graph on $n$ vertices and $\lambda:E\to 2{\mathbb{N}}$ a mapping that assigns to every edge a non-empty set of integer labels (times). Such a graph is {\em temporally connected} if a path exists with non-decreasing times from every vertex to every other vertex. In a seminal paper, Kempe, Kleinberg, and Kumar \cite{KKK02} asked whether, given such a temporal graph, a {\em sparse} subset of edges always exists whose labels suffice to preserve temporal connectivity -- a {\em temporal spanner}. Axiotis and Fotakis \cite{AF16} answered negatively by exhibiting a family of $\Theta(n2)$-dense temporal graphs which admit no temporal spanner of density $o(n2)$. In this paper, we give the first positive answer as to the existence of $o(n2)$-sparse spanners in a dense class of temporal graphs, by showing (constructively) that if $G$ is a complete graph, then one can always find a temporal spanner of density $O(n \log n)$.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube