Barrier Certificates for Assured Machine Teaching (1810.00093v2)
Abstract: Machine teaching can be viewed as optimal control for learning. Given a learner's model, machine teaching aims to determine the optimal training data to steer the learner towards a target hypothesis. In this paper, we are interested in providing assurances for machine teaching algorithms using control theory. In particular, we study a well-established learner's model in the machine teaching literature that is captured by the local preference over a version space. We interpret the problem of teaching a preference-based learner as solving a partially observable Markov decision process (POMDP). We then show that the POMDP formulation can be cast as a special hybrid system, i.e., a discrete-time switched system. Subsequently, we use barrier certificates to verify set-theoric properties of this special hybrid system. We show how the computation of the barrier certificate can be decomposed and numerically implemented as the solution to a sum-of-squares (SOS) program. For illustration, we show how the proposed framework based on control theory can be used to verify the teaching performance of two well-known machine teaching methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.