Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Barrier Certificates for Assured Machine Teaching (1810.00093v2)

Published 28 Sep 2018 in cs.SY

Abstract: Machine teaching can be viewed as optimal control for learning. Given a learner's model, machine teaching aims to determine the optimal training data to steer the learner towards a target hypothesis. In this paper, we are interested in providing assurances for machine teaching algorithms using control theory. In particular, we study a well-established learner's model in the machine teaching literature that is captured by the local preference over a version space. We interpret the problem of teaching a preference-based learner as solving a partially observable Markov decision process (POMDP). We then show that the POMDP formulation can be cast as a special hybrid system, i.e., a discrete-time switched system. Subsequently, we use barrier certificates to verify set-theoric properties of this special hybrid system. We show how the computation of the barrier certificate can be decomposed and numerically implemented as the solution to a sum-of-squares (SOS) program. For illustration, we show how the proposed framework based on control theory can be used to verify the teaching performance of two well-known machine teaching methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.