Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Weighted Spectral Embedding of Graphs (1809.11115v2)

Published 28 Sep 2018 in cs.LG and stat.ML

Abstract: We present a novel spectral embedding of graphs that incorporates weights assigned to the nodes, quantifying their relative importance. This spectral embedding is based on the first eigenvectors of some properly normalized version of the Laplacian. We prove that these eigenvectors correspond to the configurations of lowest energy of an equivalent physical system, either mechanical or electrical, in which the weight of each node can be interpreted as its mass or its capacitance, respectively. Experiments on a real dataset illustrate the impact of weighting on the embedding.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube