Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Collaborative Robot Learning from Demonstrations using Hidden Markov Model State Distribution (1809.10797v1)

Published 27 Sep 2018 in cs.RO

Abstract: In robotics, there is need of an interactive and expedite learning method as experience is expensive. Robot Learning from Demonstration (RLfD) enables a robot to learn a policy from demonstrations performed by teacher. RLfD enables a human user to add new capabilities to a robot in an intuitive manner, without explicitly reprogramming it. In this work, we present a novel interactive framework, where a collaborative robot learns skills for trajectory based tasks from demonstrations performed by a human teacher. The robot extracts features from each demonstration called as key-points and learns a model of the demonstrated skill using Hidden Markov Model (HMM). Our experimental results show that the learned model can be used to produce a generalized trajectory based skill.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.