Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SAIL: Machine Learning Guided Structural Analysis Attack on Hardware Obfuscation (1809.10743v1)

Published 27 Sep 2018 in cs.CR

Abstract: Obfuscation is a technique for protecting hardware intellectual property (IP) blocks against reverse engineering, piracy, and malicious modifications. Current obfuscation efforts mainly focus on functional locking of a design to prevent black-box usage. They do not directly address hiding design intent through structural transformations, which is an important objective of obfuscation. We note that current obfuscation techniques incorporate only: (1) local, and (2) predictable changes in circuit topology. In this paper, we present SAIL, a structural attack on obfuscation using ML models that exposes a critical vulnerability of these methods. Through this attack, we demonstrate that the gate-level structure of an obfuscated design can be retrieved in most parts through a systematic set of steps. The proposed attack is applicable to all forms of logic obfuscation, and significantly more powerful than existing attacks, e.g., SAT-based attacks, since it does not require the availability of golden functional responses (e.g. an unlocked IC). Evaluation on benchmark circuits show that we can recover an average of around 84% (up to 95%) transformations introduced by obfuscation. We also show that this attack is scalable, flexible, and versatile.

Citations (96)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.