Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scalar Arithmetic Multiple Data: Customizable Precision for Deep Neural Networks (1809.10572v2)

Published 27 Sep 2018 in cs.PF, cs.CV, and cs.MS

Abstract: Quantization of weights and activations in Deep Neural Networks (DNNs) is a powerful technique for network compression, and has enjoyed significant attention and success. However, much of the inference-time benefit of quantization is accessible only through the use of customized hardware accelerators or by providing an FPGA implementation of quantized arithmetic. Building on prior work, we show how to construct arbitrary bit-precise signed and unsigned integer operations using a software technique which logically \emph{embeds} a vector architecture with custom bit-width lanes in universally available fixed-width scalar arithmetic. We evaluate our approach on a high-end Intel Haswell processor, and an embedded ARM processor. Our approach yields very fast implementations of bit-precise custom DNN operations, which often match or exceed the performance of operations quantized to the sizes supported in native arithmetic. At the strongest level of quantization, our approach yields a maximum speedup of $\thicksim6\times$ on the Intel platform, and $\thicksim10\times$ on the ARM platform versus quantization to native 8-bit integers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.