Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Scalar Arithmetic Multiple Data: Customizable Precision for Deep Neural Networks (1809.10572v2)

Published 27 Sep 2018 in cs.PF, cs.CV, and cs.MS

Abstract: Quantization of weights and activations in Deep Neural Networks (DNNs) is a powerful technique for network compression, and has enjoyed significant attention and success. However, much of the inference-time benefit of quantization is accessible only through the use of customized hardware accelerators or by providing an FPGA implementation of quantized arithmetic. Building on prior work, we show how to construct arbitrary bit-precise signed and unsigned integer operations using a software technique which logically \emph{embeds} a vector architecture with custom bit-width lanes in universally available fixed-width scalar arithmetic. We evaluate our approach on a high-end Intel Haswell processor, and an embedded ARM processor. Our approach yields very fast implementations of bit-precise custom DNN operations, which often match or exceed the performance of operations quantized to the sizes supported in native arithmetic. At the strongest level of quantization, our approach yields a maximum speedup of $\thicksim6\times$ on the Intel platform, and $\thicksim10\times$ on the ARM platform versus quantization to native 8-bit integers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.