Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Diagnostics in Semantic Segmentation (1809.10328v1)

Published 27 Sep 2018 in cs.CV

Abstract: Over the past years, computer vision community has contributed to enormous progress in semantic image segmentation, a per-pixel classification task, crucial for dense scene understanding and rapidly becoming vital in lots of real-world applications, including driverless cars and medical imaging. Most recent models are now reaching previously unthinkable numbers (e.g., 89% mean iou on PASCAL VOC, 83% on CityScapes), and, while intersection-over-union and a range of other metrics provide the general picture of model performance, in this paper we aim to extend them into other meaningful and important for applications characteristics, answering such questions as 'how accurate the model segmentation is on small objects in the general scene?', or 'what are the sources of uncertainty that cause the model to make an erroneous prediction?'. Besides establishing a methodology that covers the performance of a single model from different perspectives, we also showcase several extensions that can be worth pursuing in order to further improve current results in semantic segmentation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.