Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Asymptotic Loss in Privacy due to Dependency in Gaussian Traces (1809.10289v2)

Published 27 Sep 2018 in cs.IT and math.IT

Abstract: The rapid growth of the Internet of Things (IoT) necessitates employing privacy-preserving techniques to protect users' sensitive information. Even when user traces are anonymized, statistical matching can be employed to infer sensitive information. In our previous work, we have established the privacy requirements for the case that the user traces are instantiations of discrete random variables and the adversary knows only the structure of the dependency graph, i.e., whether each pair of users is connected. In this paper, we consider the case where data traces are instantiations of Gaussian random variables and the adversary knows not only the structure of the graph but also the pairwise correlation coefficients. We establish the requirements on anonymization to thwart such statistical matching, which demonstrate the significant degree to which knowledge of the pairwise correlation coefficients further significantly aids the adversary in breaking user anonymity.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.