Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Visual Diver Recognition for Underwater Human-Robot Collaboration (1809.10201v1)

Published 19 Sep 2018 in cs.CV and cs.RO

Abstract: This paper presents an approach for autonomous underwater robots to visually detect and identify divers. The proposed approach enables an autonomous underwater robot to detect multiple divers in a visual scene and distinguish between them. Such methods are useful for robots to identify a human leader, for example, in multi-human/robot teams where only designated individuals are allowed to command or lean a team of robots. Initial diver identification is performed using the Faster R-CNN algorithm with a region proposal network which produces bounding boxes around the divers' locations. Subsequently, a suite of spatial and frequency domain descriptors are extracted from the bounding boxes to create a feature vector. A K-Means clustering algorithm, with k set to the number of detected bounding boxes, thereafter identifies the detected divers based on these feature vectors. We evaluate the performance of the proposed approach on video footage of divers swimming in front of a mobile robot and demonstrate its accuracy.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)