Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Language Modeling Teaches You More Syntax than Translation Does: Lessons Learned Through Auxiliary Task Analysis (1809.10040v2)

Published 26 Sep 2018 in cs.CL

Abstract: Recent work using auxiliary prediction task classifiers to investigate the properties of LSTM representations has begun to shed light on why pretrained representations, like ELMo (Peters et al., 2018) and CoVe (McCann et al., 2017), are so beneficial for neural language understanding models. We still, though, do not yet have a clear understanding of how the choice of pretraining objective affects the type of linguistic information that models learn. With this in mind, we compare four objectives---LLMing, translation, skip-thought, and autoencoding---on their ability to induce syntactic and part-of-speech information. We make a fair comparison between the tasks by holding constant the quantity and genre of the training data, as well as the LSTM architecture. We find that representations from LLMs consistently perform best on our syntactic auxiliary prediction tasks, even when trained on relatively small amounts of data. These results suggest that LLMing may be the best data-rich pretraining task for transfer learning applications requiring syntactic information. We also find that the representations from randomly-initialized, frozen LSTMs perform strikingly well on our syntactic auxiliary tasks, but this effect disappears when the amount of training data for the auxiliary tasks is reduced.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.