Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Finding Sparse Solutions for Packing and Covering Semidefinite Programs (1809.09698v3)

Published 25 Sep 2018 in cs.DS

Abstract: Packing and covering semidefinite programs (SDPs) appear in natural relaxations of many combinatorial optimization problems as well as a number of other applications. Recently, several techniques were proposed, that utilize the particular structure of this class of problems, to obtain more efficient algorithms than those offered by general SDP solvers. For certain applications, such as those described in this paper, it may be desirable to obtain {\it sparse} dual solutions, i.e., those with support size (almost) independent of the number of primal constraints. In this paper, we give an algorithm that finds such solutions, which is an extension of a {\it logarithmic-potential} based algorithm of Grigoriadis, Khachiyan, Porkolab and Villavicencio (SIAM Journal of Optimization 41 (2001)) for packing/covering linear programs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.